Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach

نویسندگان

  • L. Jeff Hong
  • Yi Yang
  • Liwei Zhang
چکیده

When there is parameter uncertainty in the constraints of a convex optimization problem, it is natural to formulate the problem as a joint chance constrained program (JCCP) which requires that all constraints be satisfied simultaneously with a given large probability. In this paper, we propose to solve the JCCP by a sequence of convex approximations. We show that the solutions of the sequence of approximations converge to a Karush-Kuhn-Tuck (KKT) point of the JCCP under a certain asymptotic regime. Furthermore, we propose to use a gradient-based Monte Carlo method to solve the sequence of convex approximations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Smooth Monte Carlo Approach to Joint Chance Constrained Programs

We study joint chance constrained programs (JCCPs). JCCPs are often non-convex and non-smooth, and thus are generally challenging to solve. In this paper, we propose a logarithmsum-exponential smoothing technique to approximate a joint chance constraint by the difference of two smooth convex functions and use a sequential convex approximation algorithm, coupled with a Monte Carlo method, to sol...

متن کامل

Joint rectangular geometric chance constrained programs

This paper discusses joint rectangular geometric chance constrained programs. When the stochastic parameters are elliptically distributed and pairwise independent, we present a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on variable transformation together with piecewise linear appro...

متن کامل

Chance constrained problems: penalty reformulation and performance of sample approximation technique

We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6, 11]. The obtained problems with penalties and with a fixed set of feasible so...

متن کامل

Chance Constrained Optimization for Targeted Internet Advertising

We introduce a chance constrained optimization model for the fulfillment of guaranteed display Internet advertising campaigns. The proposed formulation for the allocation of display inventory takes into account the uncertainty of the supply of Internet viewers. We discuss and present theoretical and computational features of the model via Monte Carlo sampling and convex approximations. Theoreti...

متن کامل

Solving Chance-Constrained Stochastic Programs via Sampling and Integer Programming

Various applications in reliability and risk management give rise to optimization problems with constraints involving random parameters, which are required to be satisfied with a pre-specified probability threshold. There are two main difficulties with such chance-constrained problems. First, checking feasibility of a given candidate solution exactly is, in general, impossible since this requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2011